International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 4 Number 10 (2015) pp. 249-255 http://www.ijcmas.com

Original Research Article

Mechanisms of Resistance to Erythromycin among Viridans Group Streptococci (VGS) Isolated from Blood Cultures

Samar S. Rashad*, Rania A. Amar, Magda S. Gabr, Moataz B. El Noamany

Department of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt *Corresponding author

ABSTRACT

Keywords	The aim of this work was to evaluate erythromycin resistance mechanisms of viridans group streptococci (VGS) isolates obtained from blood cultures. Fifty
VGS, Blood	VGS isolates were obtained from patients suffering from infective endocarditis as
cultures,	suggested by their primary physicians. The macrolide resistance mechanisms of
Erythromycin	erythromycin resistant isolates were studied by double disc test and real time PCR.
resistance,	Fifteen (30%) VGS isolates resistant to erythromycin were distributed genetically
MLS _B	as follows: ermB (53.3%), ermB+mefA/E (13.3%) (Those isolates containing ermB
phenotype,	whether alone or combined with mefA/E account for MLS _B phenotype), mefA/E
M phenotype,	(26.6%) (account for M phenotype) and only phenotypically (6.8%) in rank of
ermB,	order. From our study, we concluded that constitutive MLS _B phenotype associated
<i>mefA/</i> E	with ermB was the predominant mechanism of macrolide resistance among our
U	erythromycin resistant VGS isolates and M phenotype was associated with mefA/E.

Introduction

Viridans group streptococci (VGS) are part of the oral flora and cause infections such as septicemia infective endocarditis, and immunocompetent neutropenia in and immunocompromised patients. VGS have accounted for 25 to 30% of bacteremic episodes among patients with malignancies and are the most common cause of early bloodstream infections among hematopoetic stem cell transplantation recipients (Ergin et al., 2011).

Resistance to macrolides and other antibiotics among blood cultures of VGS is

a major concern and could compromise currently available prophylactic and therapeutic regimens (Nandhakumar *et al.*, 2008). It has been shown that VGS can be important reservoirs of resistance genes for the more pathogenic streptococci like *Streptococcus pneumoniae* and *Streptococcus pyogenes* (Brenciani *et al.*, 2014).

There are three different resistance mechanisms causing macrolide resistance in VGS isolates, the first is the target site modification, mediated by the erythromycin resistance methylases, encoded by the ermA or ermB genes, conferring resistance to macrolide, lincosamide and streptogramin B antibiotics (MLS_B phenotype). Expression of MLS_B resistance can be constitutive (cMLS_B) or inducible (iMLS_B). The second is the active drug efflux mechanism, mediated by a membrane-bound efflux protein encoded by mefA gene conferring resistance to 14- and 15- membered macrolides only (M phenotype). Finally, the third mechanism of resistance is a mutation in the streptococcal 23S rRNA or ribosomal protein genes, leading to resistance to macrolide or streptogramin B antibiotics (MS phenotype) (Ergin et al., 2006).

The aim of this work was to evaluate erythromycin resistance mechanisms of viridans group streptococci (VGS) isolates obtained from blood cultures.

Materials and Methods

The present study was conducted at the Central Microbiology Laboratory, Clinical Pathology Department, Ain Shams University, Cairo, Egypt during the period from January 2014 to October 2014.

Samples selection and susceptibility testing

The study was conducted on 50 blood culture specimens with positive signals obtained from patients suffering from infective endocarditis as suggested by their primary physicians. VGS blood culture isolates were identified by colony morphology, gram stain, catalase test and optochin test. Susceptibility to erythromycin was determined by disc diffusion method on Mueller- Hinton agar plates supplemented with 5% sheep blood. One isolate per patient was used. S. pneumonia ATCC 49619 was used as quality control. Isolates were determined using a double disc test with erythromycin (15µg) discs on Mueller-Hinton agar plates containing 5% sheep blood (CLSI, 2009).

Real – time PCR for detection of erythromycin resistance genes

DNA Extraction

Cell lysis for Gram-positive bacteria

One ml of cultured cells was transferred into a 1.5 ml microtube. The tubes were centrifuged at 15,000 g for 1 min to harvest the cells and the supernatant was discarded. The cell pellets were resuspended in 300 µl of cell resuspension solution. Two µl of lysozyme solution was added to each tube and mixed well by inverting. The tubes were incubated at 37°C for 60 minutes with occasional inverting then centrifuged at 15,000 g for 1 min and the supernatant Then pellets discarded. the were resuspended in 300 µl of cell lysis solution.

RNase treatment

1.5 μ l of RNase Solution was added and mixed by inverting. The tubes were incubated at 37°C for 15–30 min and cooled on ice for 1 min.

Protein precipitation

100 μ l of Protein Precipitation Solution was added and vortexed vigorously for 20-30 sec, then centrifuged at 15,000 g for 5 min.

DNA precipitation

The supernatants were transferred to clean 1.5 ml microtubes each containing 300 μ l Isopropanol >99%. The samples were mixed by inverting gently for 1 min. then centrifuged at 15,000 g for 1 min (DNA

should be visible as a small white pellet). The supernatant was discarded and the tube was drained briefly on cleaned absorbent papers. 500 μ l 80% Ethanol was added to each tube and inverted several times to wash the DNA pellets then were centrifuged at 15,000 g for 1 min. The ethanol carefully discarded. The tubes were left to dry in air at room temperature for 10–15 min.

DNA hydration

50-100 μ l of DNA Hydration Solution was added to the dried DNA pellet in each tube. The DNA was hydrated by incubation at 65°C for 60 min. The samples were stored at -20°C till use.

DNA amplification and detection

The primers used for *erm*B and *mef*A/E genes and the thermal cycling conditions according to (Ergin *et al.*, 2011).

The amplification program was followed immediately by a melt program consisting of 1 minute at 95°C, 30 sec at 55°C then again to 95°C for 30 sec.

The greenish horizontal line in the graph is the threshold line at which the fluorescence begins to be detected (The point at which the amplification plot crosses the threshold is the cycle threshold=Ct) as shown in figure 1 & 2 (Muldrew, 2009). The T_m (temperature at which 50% of DNA is single stranded) of samples which were identical or close to that of positive control were considered the gene of target as shown in figure 3 & 4.

Results and Discussion

In our study, 35 (70%) were sensitive to erythromycin, while 15 (30%) were resistant to erythromycin as shown in table 1, 66.7% (n.10) constitutive MLS_B phenotype as

shown in table 2 and 33.3% (n. 5) M phenotype as shown in table 3. Erythromycin resistant VGS isolates were distributed genetically as follows: *ermB* (53.3%), *mefA/E* (26.6%), *ermB+mefA/E* (13.3%) and only phenotypically (6.8%), one isolate did not carry any of macrolide resistance genes studied here as shown in table 4.

Our results agreed with Ergin *et al.* (2011) who studied 50 VGS blood cultures in which the percentage of erythromycin resistance was 36% (n. 18) and 7 were intermediate resistant (14%), 64% (n. 16) were cMLS_B phenotype and 36% (n. 9) were M phenotype. The percentage genotypic carriage of each gene was: *erm*B, 56% (n. 14); *mef*A/E, 28% (n. 7); *erm*B+*mef*A/E, 8% (n. 2). Two of the isolates did not carry any of macrolide resistance genes studied there.

Uh et al. (2004) studied on 106 VGS blood cultures with rate of non-susceptibility to erythromycin 33.9%, 22 (61.1%) of 36 erythromycin non-susceptible isolates expressed constitutive resistance to macrolide-lincosamide-streptogramin В antibiotics (a constitutive MLS_B phenotype); 13 isolates (36.1%) expressed an M phenotype; and 1 isolate, a Streptococcus bovis isolate, had an inducible MLS_B resistance phenotype. ErmB was found in isolates with constitutive/inducible MLS_B phenotypes, and *mefA* in isolates with the M phenotype. In 3 isolates (2 isolates with a constitutive MLS_B phenotype and in 1 isolate with the M phenotype), none of ermA, erm B, erm C or mef A was detected by PCR.

Achour *et al.* (2004) studied on a total of 169 *S. mitis* isolates were recovered from 66 neutropenic patients at the Tunisian Bone Marrow Transplant Centre. Of these, 120 (70%) were resistant to erythromycin, 58

strains (48.5%) of isolates had an MLS_B phenotype and 57 (47.5%) displayed the M phenotype.

Rodriguez-Avial *et al.* (2005) reported that 45.6% (n=79) of VGS were resistant to erythromycin, of the 79 erythromycin-resistant strains, 61% displayed constitutive macrolide – lincosamide - streptogramin B (cMLS_B) resistance, 35% displayed the M phenotype, and 4% displayed the inducible MLSB (iMLS_B) phenotype.

Elia and colleagues (2009) stated that 18.7% (78 out of 416) of VGS were resistant to erythromycin and the leading resistance gene was *erm*B (74.3% of the isolates), but disagreed in the following order of these

genes; *erm*B+*mef*A combination (17.9%) and *mef*A alone (7.7%).

In contrast to our study Zolezzi *et al.* (2004) from Spain reported that the M phenotype was predominant (59.38%) among their erythromycin-resistant VGS isolates from oropharynx samples, and they found the *mef*A/E gene in all the strains with M phenotype and *mef*E was the predominant subclass (95.36%).

From our study, we concluded that constitutive MLS_B phenotype associated with *ermB* was the predominant mechanism of macrolide resistance among our erythromycin resistant VGS isolates and M phenotype was associated with *mefA/E*.

Table.1 Distribution of erythromycin resistance among all isolates

Erythromycin Resista	Total	
Frythromycin Pasistanca	Count	15
Erythromyeni Resistance	%	30.0%
Total	Count	50
Total	%	100.0%

Table.2 Distribution of MLS_B phenotype resistance among all isolates

MLS _B phenot	Total	
	Count	10
	%	66.7%
Total	Count	15
	%	100.0%

M phenotype		Total
	Count	5
	%	33.3%
Tetal	Count	15
i otal	%	100.0%

Table.3 Distribution of M phenotype resistance among erythromycin resistant VGS isolates

Table.4 Distribution of patterns of resistance by PCR among erythromycin resistant VGS isolates

Resistance by PCR			Total
	ermB	Count	8
		%	53.3%
	ermB + mef A/E	Count	2
		%	13.3%
	mef A/E	Count	4
		%	26.6%
	No	Count	1
	(<i>erm</i> B or <i>mef</i> A/E)	%	6.8%
Total		Count	15
		%	100.0%

Figure.1 Results of Syber Green real-time PCR in amplification plot with cycle's number on x axis and florescence on y axis (*erm*B gene)

Figure.2 Results of Syber Green real-time PCR in amplification plot with cycle's number on x axis and florescence on y axis (*mefA/E* gene)

Figure.3 Results of melting curve, average T_m= 76.75–77.3°C (*erm*B)

Figure.4 Results of melting curve, average $T_m = 75.75 - 77.55^{\circ}C$ (*mefA/E*)

References

- Achour, W., Olfa, G., Brigitte, M., Annie, C., Roland, L., Assia, B.H. 2004.
 Phenotypic and molecular characterization of macrolide and streptogramin resistance in Streptococcus mitis from neutropenic patients. J. Antimicrob. Chemother., 54: 117–121.
- Brenciani, A., Tiberi, E., Tili, E., Mingoia, M., Palmieri, C., Varaldo, P.E., Giovanetti, E. 2014. Genetic determinants and elements associated with antibiotic resistance in viridans group streptococci. J. Antimicrob. Chemother., 69: 1197– 1204.
- Clinical and Laboratory Standards Institute (CLSI), 2009. Performance standards for antimicrobial susceptibility testing, Nineteenth Informational Supplement: M100-S19, Vol. 29. Wayne, PA, USA.
- Elia, G.G., Fernando, B., Elena, L., Jose´, M.N., Asuncio´n, F., Rosa, C., Rafael, C. 2009. High clonal diversity in erythromycin-resistant Streptococcus pneumoniae invasive isolates in Madrid, Spain. J. Antimicrob. Chemother., 64: 1165– 1169.
- Ergin, A., Acer, O.K., Hasçelik, G. 2011. Erythromycin and penicillin resistance mechanisms among viridans group streptococci isolated from blood cultures of adult patients with underlying diseases. *New Microbiologica*, 34: 187–193.
- Ergin, A., Ercis, S., Hasçelik, G. 2006. Macrolide resistance mechanisms and in vitro susceptibility patterns of viridans group streptococci isolated from blood cultures. *J. Antimicrob. Chemother.*, 57: 139–41.
- Muldrew, K.L. 2009. Molecular diagnostics

of infectious diseases. Curr. Opin. Pediatrics, 21: 102–111.

- Nandhakumar, B., Senthilkumar, S., Menon, T., Shanmugasundaram, S. 2008. Penicillin-resistant viridans group streptococci from blood cultures of infective endocarditis patients in South India. *Int. J. Antimicrob. Agent*, 32: 538–547.
- Rodriguez-Avial, I., Carmen, R.A., Esther, C., Juan, J.P. 2005. *In vitro* activity of telithromycin against viridians group streptococci and *Streptococcus bovis* isolated from blood: Antimicrobial susceptibility patterns in different groups of species. *J. Antimicrob. Chemother.*, 49: 820– 823.
- Uh, Y., Shin, D.h., Jang, I.H., Hwang, G.Y., Lee, M.K., Yoon, K.J. 2004. Antimicrobial susceptibility patterns and macrolide resistance genes of viridians streptococci from blood cultures in Korea. J. Antimicrob. Chemother., 53: 1095–1097.
- Zolezzi, P.C., Laplana, L.M., Calvo, C.R., Cepero, P.G., Erazo, M.C., Gomez-Lus, R. 2004. Molecular basis of resistance to macrolides and other antibiotics in commensal viridans group streptococci and Gemella spp. and transfer of resistance genes to *Streptococcus pneumoniae*. *Antimicrob. Agents Chemother.*, 48: 3462–3467.